

Fortress Power

Energy Storage Systems

Jing Yu Managing Director at Fortress Power

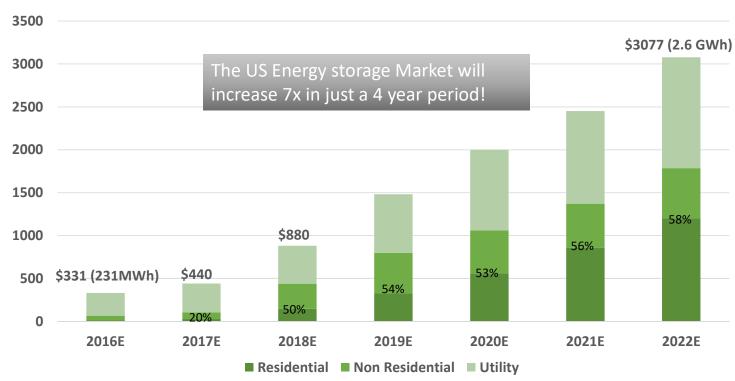
Bryan Whitton
Product Manager at Darfon

TOPICS

Growth Opportunity with Us

Fortress Energy Storage Sizing Tool

How to Install


GROWTH OPPORTUNITY WITH US

Growth Opportunity with Us

MARKET OPPORTUNITIES

Source: GTM Research

SELLING ENERGY STORAGE

- ☐ 74% of homeowners are interested in home energy storage
- ☐ Only 14% of homeowners received quotes for Solar+Storage;
 This is due to:
 - Expensive equipment
 - Complicated installation
 - Lack of proper trainings
- ☐ 50% of those receiving quotes convert into buyers

Source: Energysage Report

COMPANY INTRODUCTION

Fortress Power – Lithium Battery

Headquarter: Southampton, PA (30,000 sqf facility)

Manufacturing facility: China, since 2008

Darfon Authorized Distributor

Darfon – Power Electronics

Headquarter: Taiwan

US Headquarter: Mountain View, CA

Established: 1997

Parent Company: BenQ Group (> \$ 25 bn)

LITHIUM FERRO (IRON) PHOSPHATE TECHNOLOGY

We Use The Safest Lithium Technology – Lithium Ferro Phosphate

	FORTRESS	Other Lithium Ion (e.g. Tesla, LG Chem, Panasonic)
Chemistry	Lithium Ferro Phosphate (LFP)	Nickel- Manganese -Cobalt (NMC)
Safety	✓	Х
Eco-friendly	✓	Х
Operating Temperature	-4 — 140 °F	14 – 113 °F
Life Cycles	6000	< 3000
Peak Power Output	10 KW	7 KW
Rate of Capacity Loss	LFP ·	< NMC

Fortress LFP Battery

Search LFP vs. NMC nail test videos on YouTube

FORTRESS BATTERY SPECIFICATION

SAFE • AFFORDABLE • SLICK

Size	LFP- 10	LFP- 15
Total Energy (kWh)	10.24	15.36
Max. Charge Current (Continuous)	[A] 100	100
Max. Discharge Current (Continuou	ıs) [A] 100	100
Max. Pulse Current (for 10 sec) [A]	200	200
Capacity [Ah]	200	300
Voltage [V]	48 (51.2)	48 (51.2)
Dimension [H xW x D, inch]	33 x 16.4 x 9.4	33 x 16.6 x 13.4
Weight [lbs]	286	429
Depth of Discharge		00%
Warranty		years
Life Cycles	_); 80% @ 6000
Stack-ability	2 batteries in pa	rallel to 1 inverter

Fortress*Power* Lithium Battery

FORTRESS NEW GENERATION BATTERY

DISPLAY • MORE COMPACT • MORE POWER

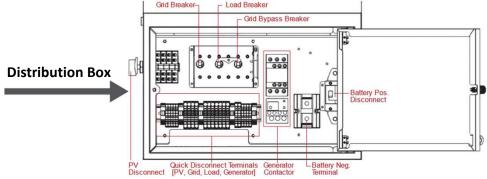
Size	G2LFP- 15
Total Energy (kWh)	15.36
Max. Charge Current (Continuo	us) [A] 100
Max. Discharge Current (Contin	nuous) [A] 100
Max. Pulse Current (for 3 sec) [A] 150
Capacity [Ah]	300
Voltage [V]	48 (51.2V)
Dimension [H xW x D, inch]	39 x 22 x 11
Weight [lbs]	350
Depth of Discharge	100%
Warranty	10 years
Life Cycles	90% @ 3000; 80% @ 6000
Stack-ability	5 batteries in parallel to 1 inverter

First units available in Late September!

COMPATIABLE INVERTERS

FORTRESS BATTERIES CAN BE PAIRED WITH MOST 48V CHARGERS AND HYBRID INVERTERS!

Brand	Inverter/Charger Mode
Darfon	H5001; HB51 **
Outback	FLEX max charge controller (48V), FLEXpower series (48V); Radiance series (48V); FXR(A) and FXR (E) series (48V); GVFX and GVFX series (48V);
Schneider	Conext XW MPPT charge controller; Conext XW+ series; Conext SW;
Magnum	MS 4448PAE; MS 4048-20B
SMA	SUNNY ISLAND 4548-US/6048-US



DARFON HYBRID INVERTER

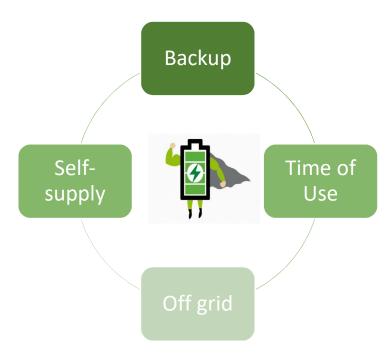
Compact, Easy-to-install & Highly Efficient

It integrates PV inverter, charger inverter, control, communication, distribution box, and auto-transfer, all in one unit.

SPECIFICATIONS

	Technical Specification
Inverter AC output	5.5 KW*
Surge power at backup	5.5/6.5/7.5 kW (40/5/1 second)
Transfer Switch	48 amps auto-transfer relay at 20ms
AC Grid Voltage	120/240 volts
AC Output	23 amps
Battery Input Voltage	40-58.4 volts (48V)
Battery Life Cycles	Up to 6,000
Battery Capacity	10 or 15 kWh (Scalable to 75 kWh)
PV Array	Up-to 6.5 KW

^{*}The inverters are allowed to be stacked up-to 16.5 kW soon!


5 kW/10 kWh ESS

APPLICATIONS

ALL IN ONE SOLUTION

DC coupled solution:

- ✓ One inverter manages PV & Storage
- ✓ Higher efficiency

BACKUP OPTIONS

	Fortress Lithium	Lead Acid	Generator
Applications	Backup power, time of use, self-use & off grid	Backup power Backup power	
Depth of discharge	100%	50%	N/A
Potential Harm	Safest technology	Risk of harmful gases	Environmental pollution
Life Cycles	6,000	500-1,000	N/A
Warranty	10 years	2 years	2 years
Fuel Cost	\$0	\$0	\$ 50-100/day
Maintenance	No	Every 6 months	Yes
Incentives	Yes	Yes	No

COST ANALYSIS

	Fortress Power + Darfon	Lead Acid	Generator (20 KW)
Total Installed Cost	\$12,000	\$13,600	\$10,000
SGIP Incentive	\$3,150	\$3,150	N/A
30% ITC	\$2,655 (\$3,600 w/o SGIP)	\$3,315 (\$4,080 w/o SGIP)	N/A
Net Out-of-Pocket	\$6,195 (\$8,400 w/o SGIP)	7,135 (\$9,520 w/o SGIP)	\$10,000
Cost per Cycle	\$1 (\$1.4 w/o SGIP)		
Fuel Cost	\$0	\$0	\$ 50-100/day

[•]Fortress system: 5kW inverter + 10 kWh battery (9 kWh usage power)

[•] Lead Acid system: Outback GS 4048a + 18 kWh lead acid battery (9 kWh usage power)

COMPARISON CHART

	Fortress Power+Darfon	Tesla	Solaredge + LG Chem	Pika Energy	Sonnen
Configuration	DC coupling	AC coupling	DC coupling	DC coupling	AC coupling
Battery Chemistry	LFP	NMC	NMC	NMC	LFP
Battery Cycles	6,000	2,800	2,500	2,800	10,000
Price level	Low	Low	Medium	High	High
Cost per Cycle	Lowest	Medium	High	Highest	Medium
Maintenance	Easy	Hard	Easy	Easy	Hard

[•]AC coupling requires an additional PV inverter and has at least 5% more power loss

COMPETITIVE ADVANTAGE

✓ COMPETIVE PRICED

✓ LOWEST COST PER CYCLE

- ✓ ALL IN ONE SOLUTION
- **✓** MORE EFFICIENT

✓ EASY INSTALL/MAINTENANCE

FORTRESS ENERGY STORAGE SIZING TOOL

FORTRESS ENERGY STORAGE SIZING TOOL

FORTRESS ENERGY STORAGE SIZING TOOL

How to size the Energy Storage System For Backup

- 1. Sizing PV array
- 2. Estimate average daily PV production
- 3. Selecting critical load circuits
- 4. Calculating daily usage of critical load panel
- 5. Selecting battery bank size

Available for our authorized dealer

PV ARRAY SIZING

Solar PV Array- System Sizing

	Solar Module Specifications							tring Specifica	tions
String	Module Watts	Voc	Vmppt	Quantity	Temperature Coefficient of Voc %/°C	Record-low temperature °C	String Voc	String Vmppt	PV array size
String 1	310	40.3	32.9	9	-0.29	-20	410.0	296.1	2790
String 2	310	40.3	32.9	8	-0.29	-20	364.5	263.2	2480
	Total Modules		17			Total PV System	Size(Watts)	5270	

Darfon H5000 Specifications			
String VOC String VMPPT PV System			
120 - 460V	250 - 430 V	Up to 6.5 kW	

2 independent MPPTs allow different module layout in each string.

ESTIMATE AVERAGE DAILY PV PRODUCTION

Monthly PV Production of A 5.27 KW PV Array in NH

	Solar Radiation	AC Energy	Energy Per Day (watts)
			,
January	2.92	410	13,226
February	3.8	484	17,286
March	4.54	625	20,161
April	5.27	668	22,267
May	5.84	735	23,710
June	6.07	722	24,067
July	6.12	746	24,065
August	5.69	694	22,387
September	4.73	571	19,033
October	3.53	462	14,903
November	2.57	337	11,233
December	2.23	313	10,097

ESTIMATE AVERAGE DAILY PV PRODUCTION

2 Essential LED Light Bulb-60 Watt Equivalent 6 48 3 Essential Incandescent Light Bulb-60 Watt 4 240 2 4 Essential Sump Pump-1/3 HP 1 1300 8 5 Essential Water Well Pump-1/3 HP 1 1400 7 6 Kitchen Microwave Oven-650 Watts 1 1000 1 7 Kitchen Coffee Maker-4 cup 1 600 6 8 Personal Electronics Cell Phone Charger 2 50 2 9 Personal Electronics Computer-Laptop 1 250 2	200 8	
3 Essential Incandescent Light Bulb-60 Watt 4 240 2 4 Essential Sump Pump-1/3 HP 1 1300 8 5 Essential Water Well Pump-1/3 HP 1 1400 7 6 Kitchen Microwave Oven-650 Watts 1 1000 1 7 Kitchen Coffee Maker-4 cup 1 600 6 8 Personal Electronics Cell Phone Charger 2 50 2 9 Personal Electronics Computer-Laptop 1 250 2		1600
4 Essential Sump Pump-1/3 HP 1 1300 8 5 Essential Water Well Pump-1/3 HP 1 1400 7 6 Kitchen Microwave Oven-650 Watts 1 1000 1 7 Kitchen Coffee Maker-4 cup 1 600 6 8 Personal Electronics Cell Phone Charger 2 50 2 9 Personal Electronics Computer-Laptop 1 250 2	48 6	1728
5 Essential Water Well Pump-1/3 HP 1 1400 7 6 Kitchen Microwave Oven-650 Watts 1 1000 1 7 Kitchen Coffee Maker-4 cup 1 600 6 8 Personal Electronics Cell Phone Charger 2 50 2 9 Personal Electronics Computer-Laptop 1 250 2	240 6	5760
6 Kitchen Microwave Oven-650 Watts 1 1000 10 7 Kitchen Coffee Maker-4 cup 1 600 6 8 Personal Electronics Cell Phone Charger 2 50 9 9 Personal Electronics Computer-Laptop 1 250 2	800 0	0
7 Kitchen Coffee Maker-4 cup 1 600 6 8 Personal Electronics Cell Phone Charger 2 50 9 9 Personal Electronics Computer-Laptop 1 250 2	750 3	2250
8 Personal Electronics	1000 0	0
9 Personal Electronics Computer-Laptop 1 250 2	600 0	0
	50 1	100
10 Personal Electronics TV-Flat Screen-46" 1 190 1	250 2	500
	190 3	570
	4128	12508
Inverter Type Watthours/Day Surge Power Darfon H5001 12508 Watts 222 Watts Available 8	Running Watts	

SELECT BATTERY BANK SIZE

Critical Load Consumption Report

Item	Watthours/Day	_	
Refrigerator/Freezer-Energy Star	1600		
LED Light Bulb-60 Watt Equivalent	1728	Select Battery Bank Size	
Incandescent Light Bulb-60 Watt	5760		
Sump Pump-1/3 HP	0	Fortress Power Battery	LFP -15
Water Well Pump-1/3 HP	2250	System Size:	15,360 Wh
Microwave Oven-650 Watts	0	Battery Quantity	1
Coffee Maker-4 cup	0	Depth of Discharge:	90%
Cell Phone Charger	100	Available Power:	<u>13,824</u> Wh
Computer-Laptop	500		
TV-Flat Screen-46"	570		
	12,508 Wh/Day		

WHAT TO EXPECT

Available power in Battery at 90% DoD 13,824 Wh 1.1 Days

Lowest average daily available PV Power: 10,097 Wh Highest average daily available PV Power: 24,067 Wh

TIME-OF-USE APPLICATION

Provide us one of the following stats along with a monthly electric bill and we will run the financial return for you!

Monthly Electric Bills

Spreadsheet Interval Data

HOW TO INSTALL

How to Install

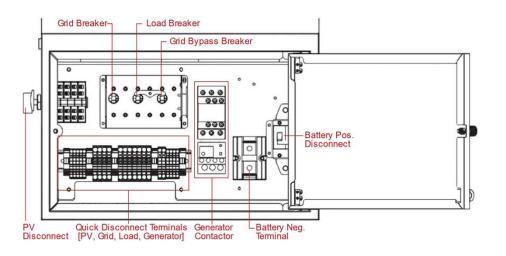
Bryan Whitton – Product Manager at Darfon

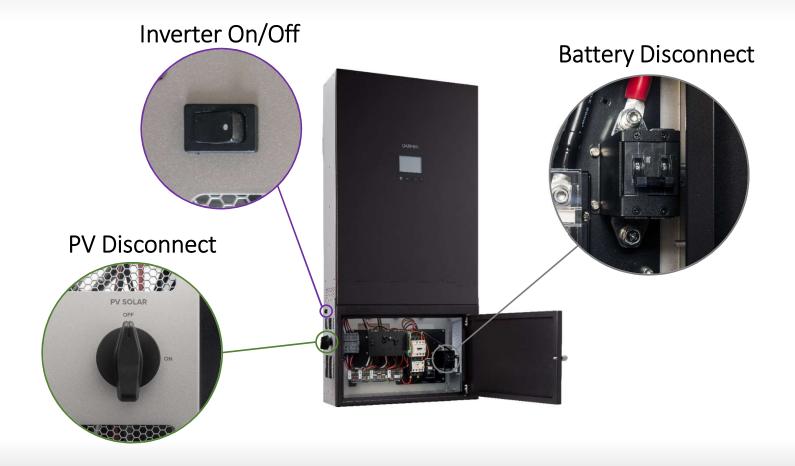
First Step

Your H5001 will come in a cardboard box. On the box will be a label with a description and the serial number. You should note both to make sure it is the right part and that you have the serial number for warranty purposes. The inverter Model is the H5000 and that is used for the permit and plans.

Removing the H5001

- Remove the accessories.
- Remove cardboard inserts and the H5001 from the plastic bag.
- Inspect for any possible damages.




H5001 Distribution Box

All the I/O happens here. Plenty of room to work with, easy to install and configure.

System Switches

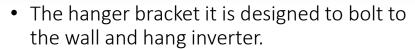
Concentric Knockouts

Located along the right, left and bottom of the distribution box



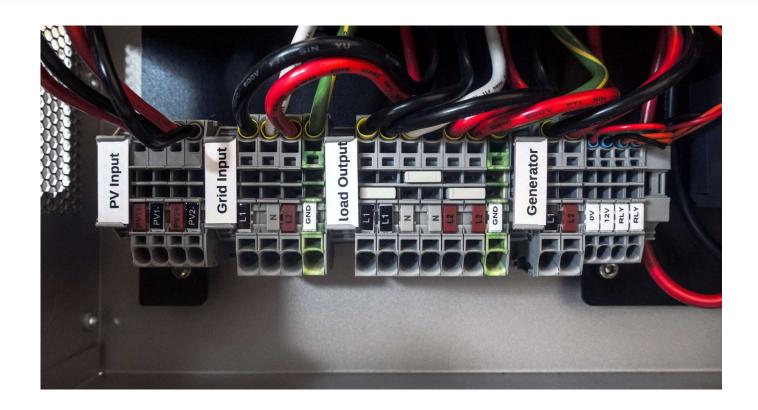
Concentric Knockouts

Battery Connection


Right below the battery terminals and shutoff switch is a concentric knockout for 1", 1.25" and 1.5" connectors. You will need 2/0 conductors for the battery.

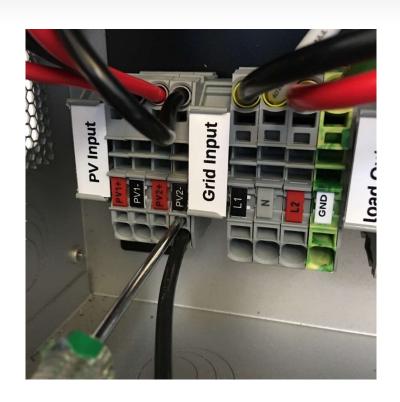
How it mounts

• I use Unistrut on the top and bottom. The H5001 simply hangs on the bracket. Be sure to bolt directly into studs.



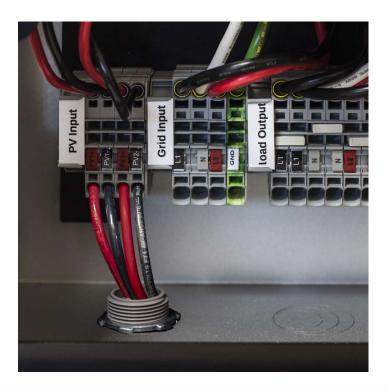
The bottom inverter bracket bolts directly to the Unistrut.

Quick Disconnect Terminals



Installing/Removing Conductors

- Installing Conductors
- Push a small screwdriver into the release access.
- Insert the wire and remove the screwdriver.
- Removing Conductors
- Push the screwdriver into the release access and pull the wire out.

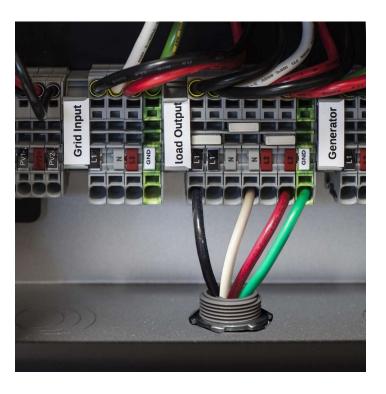

Note: Terminals use high tension springs that require a strong push to get the contact to open.

PV Conductors

- Two MPPTs in the PV inverter (It doesn't matter which string inputs you use if you only have one string)
- Maximum wire size is #10 AWG.
- *Now is a good time to check the PV voltage and polarity*

AC Grid-Tie Conductors

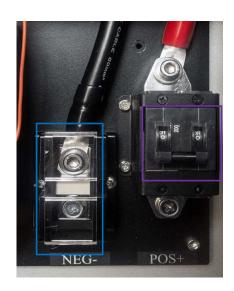
- Make sure the grid is powered down when you are connecting the wires
- We can handle #8 AWG wire in these connectors
- It takes 2 minutes to do.
- There is a fair amount of room in the distribution box to work with so leave a little extra wire length to make it even easier.

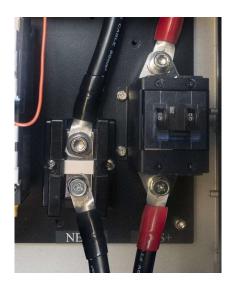


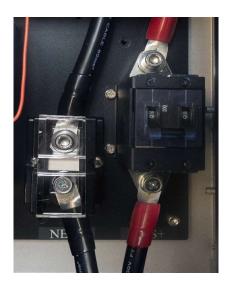
Now is a good time to check the AC voltages

Critical Load Panel

- Same as the Grid-Tie but an extra set of inputs.
- Double the inputs. Again, it gives you flexibility. Occasionally you may want to split the loads such as lights and receptacles or something along those lines. This simply gives flexibility.




Landing the Battery Conductors

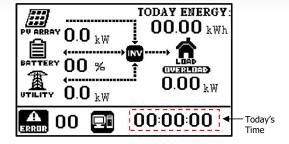

Step 1. Switch off the Battery.
Step 2. Pull the clear finger shield off from the negative connector.

Step 3. Attach the negative cable to the negative connector and the positive cable to the positive connector. Use a 5/16" lug.

Step 4. Clip the finger guard back over the negative connector for safety.

Note: Keep the cables as short as possible.

Display Panel



ICON	FUNCTION	DESCRIPTION			
Ð	Enter	Confirm the selection in setting mode or enter setting mode.			
ESC	Exit	Exits setting mode.			
←	Left	Go to previous page, move or decreasing all Number.			
→	Right	Go to next page; move; to increase all Number.			

Display Icons

POWER FLOWS PAGE

POWER INFORMATION PAGE

PV INPUTI PV ARRAY O.OO kW	
Voltage1 000 v	CHARING CURRENT OO.O A
PV INPUT2 O.OO kW	O.OO kW
Voltage2 000 V	000 v

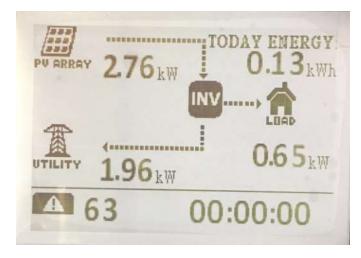
SYSTEM SETTINGS PAGE

MODE: Back-Up High Price Duration 00:00 → 00:00 TIME SETTING 00/00/2000 00:00:00
MULTI-INV: Single BATTERY TYPE: None Ver000,000

ICON	DESCRIPTION		
PV ARRAY	Represents the PV Array		
BATTERY	Represents the Battery Pack		
UTILITY	Represents the Utility		
LBAD	Represents the Load		
INV	Represents the Hybrid Inverter		
	Indicates the Connection to a PC		
Indicates the Error and error codes			
(OVERLOAD)	Indicates an overload has occurred		
•	Represents the System Mode Setting		
(Represents the System Time Setting		
(i)	Represents the System Information		

Operational Modes

PRESET MODES		DESCRIPTION			
1. Back-up (default)		Keep the battery full and discharge only in cases power outages			
2. Residential		Self-consume from PV and battery first before the Grid			
3. Back-up w/o Feed-in		Back-up mode but will not feed-in power back to the Grid			
4. Residential w/o Feed-in		Residential mode but will not feed-in power back to the Grid			
Low electricity cost		Back-up mode			
5. TOU w/o Batt. Feed-in	High electricity cost	Residential mode			
Low electricity cost		Back-up mode			
6. TOU w/ Batt. Feed-in	High electricity cost	Residential mode and will feed-in at a constant level power back to the Grid			


PRESET MODES		PV USE PRIORITY		LOAD PRIORITY			CHARGE FROM		FEED GRID FROM		BATTERY DOD		
		Load	Batt.	Grid	PV	Grid	Batt.	PV	Grid	PV	Batt. (No PV)	On-Grid	Off-Grid
1. Back-up (default)		2	1	3	1	2	3	Yes	Yes	Yes	No	40%	0%
2. Residential		1	2	3	1	3	2	Yes	No	Yes	No	40%	0%
3. Back-up w/o Feed-in		2	1	Χ	1	2	3	Yes	Yes	No	No	40%	0%
4. Residential w/o Feed-in		1	2	Χ	1	3	2	Yes	No	No	No	40%	0%
5. TOU w/o Batt. Feed-in	Low electricity cost	2	1	3	1	2	3	Yes	Yes	Yes	No	40%	0%
	High electricity cost	1	2	3	1	3	2	Yes	No	Yes	No	40%	0%
6. TOU w/ Batt. Feed-in	Low electricity cost	2	1	3	1	2	3	Yes	Yes	Yes	Yes	40%	0%
	High electricity cost	1	3	2	1	3	2	Yes	No	Yes	Yes	40%	0%

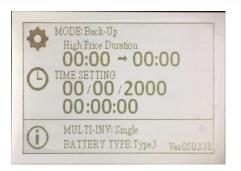
Battery Type

Always set the battery type before turning on the battery so the battery and inverter can communicate.

- Turn on all power switches EXCEPT the battery
- Turn on inverter switch
- Wait to hear 3 beeps from the inverter, this indicates the system is now running
- The inverter will show error 63. It is simply stating the battery is not connected.

Values will vary from site to site.

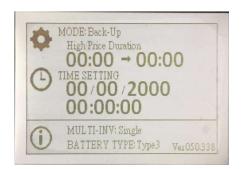
Selecting the Battery Type


- Use the → button (twice) to get to the System Settings Page
- The default mode is Back-up
- High Price Duration is to define the hours for TOU Arbitrage
- Time Setting is for setting the date and time
- MULTI-INV is for stacking inverters
- There are 4 pre-defined battery types:

0 None no battery expected

1 Lead/Acid Used with ALL batteries without direct communications

3 Darfon B05 Darfon 5 kWh battery


4 Panasonic DCB-105ZK H200 ESS only

Selecting the Battery Type (cont.)

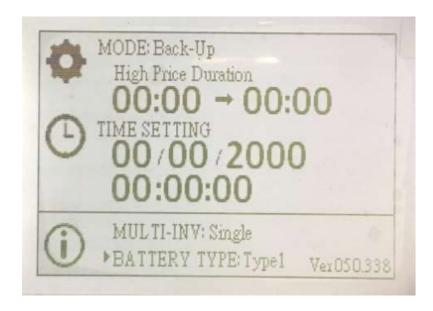
- Use the ←→ keys to select the ③ section
- - Use the right arrow and enter keys to type the password "1111"

- Use the ←→ keys to select Battery Type and hit <a>E.
- Use the $\leftarrow \rightarrow$ keys to change the type and \bullet to save.

Saving the Battery Type

• The default battery type should be none. In this case Type 1 for the Fortress LFP battery.

• After saving the new battery type, the display will show "Changing the new Settings". If everything is OK you will see the "Setting OK"


- Press any key to get back to the Systems Setting Display. Then turn off power with the rocker switch; the system will NOT restart on its own.
- Turn on the battery, turn on the H5001 with the rocker switch.

Battery Type Updated

You now have changed the battery type from 3, Darfon B05 to 1 for the Fortress LFP battery!

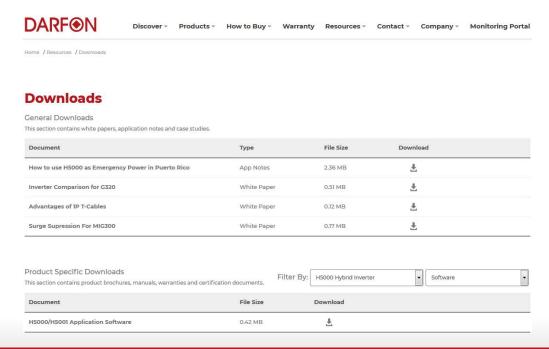
Changing the date/time and mode of operation follows a similar process. The only significant difference is for MODE and TIME SETTING sections, the password is 9999.

Nuts and Bolts

So far we have covered:

- Installing the hardware
- Configuring the hardware to the site
- Setting the battery type, operational modes and date/time

Now we go through advanced configuration


- Download Hybrid AP application
- Install the software on your computer
- Connect your computer to the inverter
- Read your AP registers
- Learn about the AP registers and how to use them to your advantage

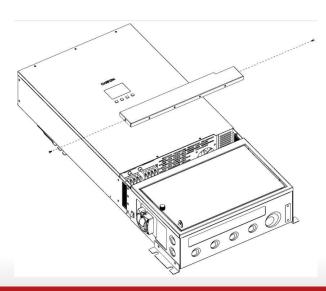
Downloading the software

From the Darfon Solar website download the file "H5000/H5001 Application Software". You can follow the link below.

• http://www.darfonsolar.com/downloads/?product_id=14&download_type_id=8

Adding the Software to your Computer

- Create a working directory for the software
- Unzip the download file in your working directory and you are done.
- Your folder contents should look like the one below.


Name	Date modified	Туре	Size
🃗 en-US	6/21/2018 11:51 AM	File folder	
〗 zh-TW	6/21/2018 11:51 AM	File folder	
CaliDefault	10/17/2017 3:37 PM	Text Document	1 KB
Darfon HyBrid AP Tool	6/21/2018 12:09 PM	Application	517 KB
Darfon HyBrid AP Tool.pdb	6/21/2018 12:09 PM	PDB File	420 KB
DebugLog	6/21/2018 12:09 PM	Text Document	0 KB
ModbusDefinition	6/18/2015 2:31 PM	Text Document	2 KB
Parameter	7/16/2015 3:48 PM	Text Document	1 KB
README	6/11/2018 11:25 AM	Text Document	1 KB
Setting	6/21/2018 12:09 PM	Configuration sett	1 KB

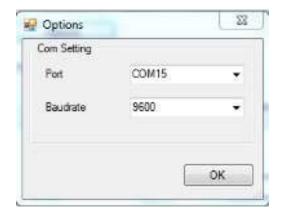
Talking to the Inverter

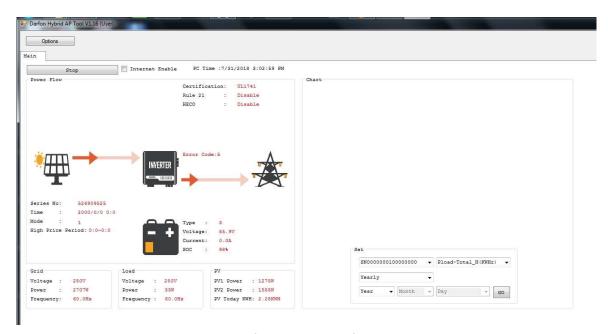
- You will need a USB-A to USAB-B cable on hand before you start.
- Remove the access cover that is held in place by 2 philips screws

- Connect the USB cable to the inverter as shown below.
- Connect the other end of the cable to a USB port on your laptop.

Launch the Darfon Hybrid AP Tool

Name	Date modified	Туре	Size
📗 en-US	6/21/2018 11:51 AM	File folder	
〗 zh-TW	6/21/2018 11:51 AM	File folder	
CaliDefault	10/17/2017 3:37 PM	Text Document	1 KB
💷 Darfon HyBrid AP Tool	6/21/2018 12:09 PM	Application	517 KB
Darfon HyBrid AP Tool.pdb	6/21/2018 12:09 PM	PDB File	420 KB
DebugLog	6/21/2018 12:09 PM	Text Document	0 KB
ModbusDefinition	6/18/2015 2:31 PM	Text Document	2 KB
Parameter	7/16/2015 3:48 PM	Text Document	1 KB
README	6/11/2018 11:25 AM	Text Document	1 KB
Setting	6/21/2018 12:09 PM	Configuration sett	1 KB

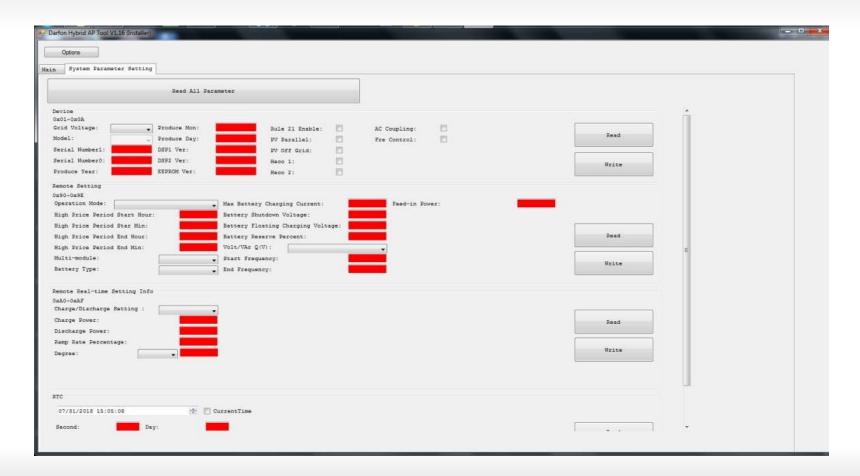

A user level login requires no password.


You can see a nice amount of what is happening with your inverter very easily. Nothing can be changed from this login level.

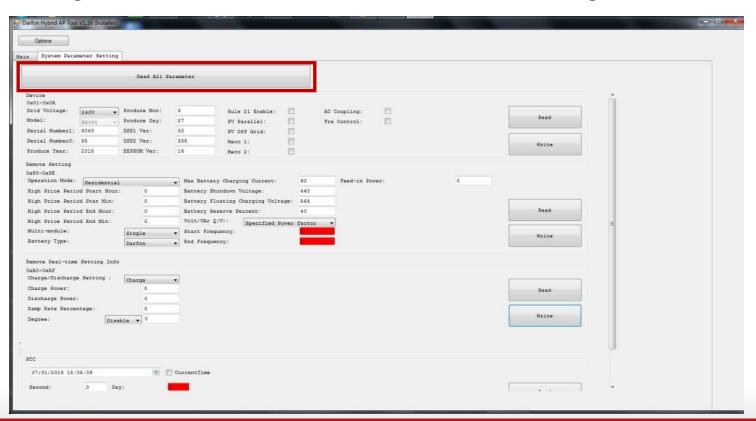
You must set the Serial COM Port. The Baudrate is 9600 and the computer will assign the COM port. In this case, my computer allocated COM15. Click on OK.

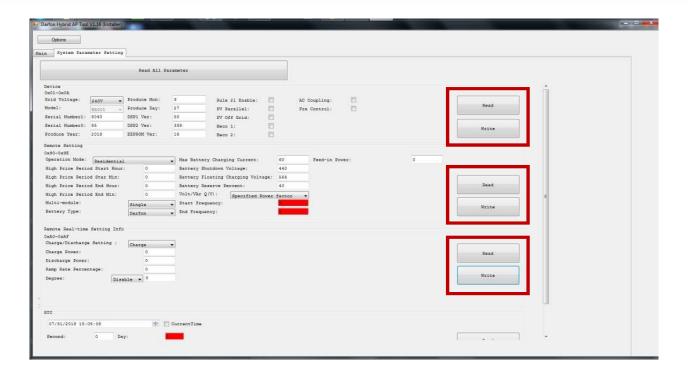
This is the default screen for the User login.

- An installer level login requires the password "Installer1234". The password is case sensitive. Also, please note that we do NOT publish this password in the manual.
- You will also need to set the COM port for this login as you did with the User login.

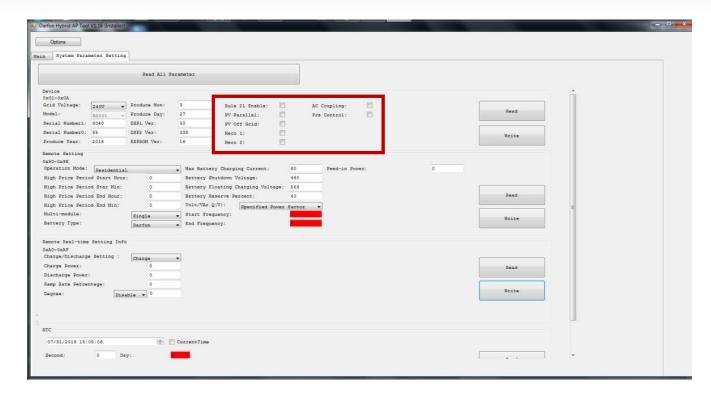


• From this login you can make substantial changes to the way the H5000 works.


Caution: You can make the system perform better or a lot worse depending on what you do here.

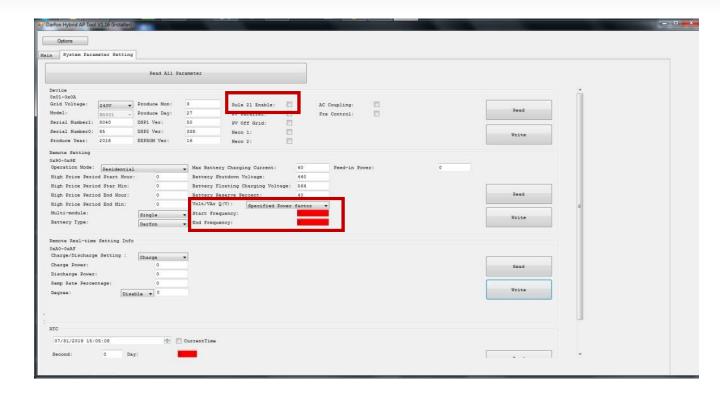


Clicking on "Read All Parameters" will collect the current register contents from the inverter.

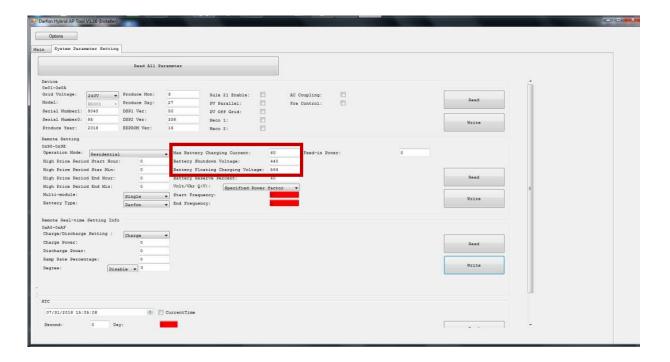


Read and write registers by sections to reduce the potential of changing a register you didn't mean to.

- Press "Read" to get the current values form the inverter.
- Make your changes.
- Then Press "Write" to implement the changes.
- Turn off the inverter with the rocker switch. Wait for 15 seconds before turning the system back on.
- Press "Read" to confirm the new values are set in the EEPROM.



There are check boxes that activate specific features.


- The 2 most commonly used are PV Off Grid and Rule 21.
- Check "PV Off Grid", if your system is a true off grid installation. Several changes are made to power flow and how deeply the battery is discharged.
- Check "Rule 21 Enable", if you are in California or any state that requires Rule 21 compliancy.

- For Rule 21, you will need to know what the local utility values are.
- Check "Rule 21 Enable"
- Set the Volt/Var, Start Frequency and End Frequency values.
- Press "Write", then restart the inverter.

The most common fields that need to be adjusted are

- Max Battery Charging current
- Battery Shutdown Voltage
- Battery Floating Charging Voltage

These define how the battery is charged and the lowest and highest voltage that the battery can work with for charging and discharging.

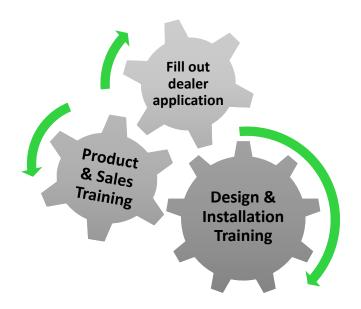
You need these parameters from the supplier of the battery.

Note: Voltage values are read as if there is a decimal point between the two rightmost digits. So 446 is 44.6V and 564 is 56.4V.

You have successfully installed and configured the H5001 inverter. You have done all the things that a typical installation would need to have done to it. Off-Grid is handled, Rule 21 is handled. Date, Time, Battery and mode of operation all handled. Total time to do all of this on a real site is measured in minutes if you know what to do. None of it can be done at the factory and so it is up to the installers to know what to do and how to do it.

DEALER BENEFITS

Dealer Benefits


Sales & Marketing Support

Product & Webinar Training

Great Dealer Discount Price

Logistic Support

How to Become an Authorized Dealer

THANK YOU & CONTACT US

Jing Yu

Managing Director

jingy@fortresspower.com

(877) 497- 6937

www.fortresspower.com

Bryan Whitton

Product Manager

Bryan.whitton@darfon.com

(650) 815-7121

www.darfon.com

discount on first order

Promo Code: Gogreen

