

Fortress Power Webinar: FAQ of Lithium Energy Storage

Jamie Brill Marketing Manager

Jing Yu CEO

Topic

Why Energy Storage

Company Introduction

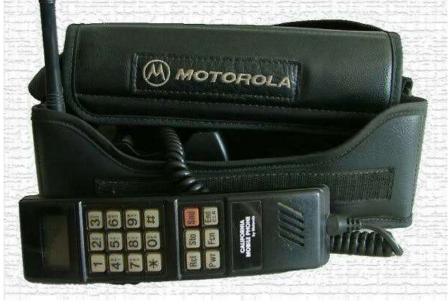
Battery Technology Comparison

Integrating battery storage to PV array

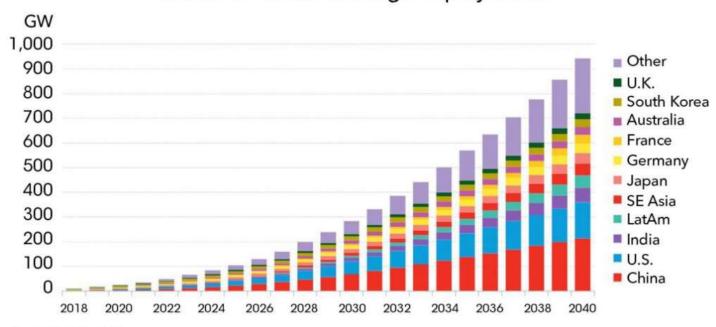
Design Guide for PV + Storage

Challenges with PV Grid-tie System

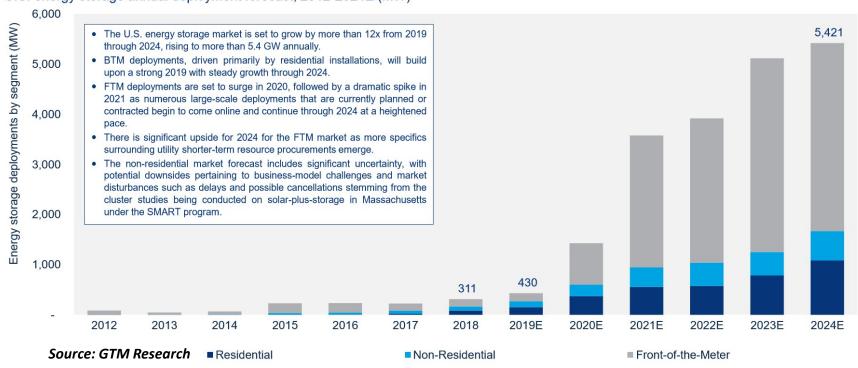
- Unbalanced Generation and Consumption
- No power during outages
- Back-feeding is prohibited in some regions.

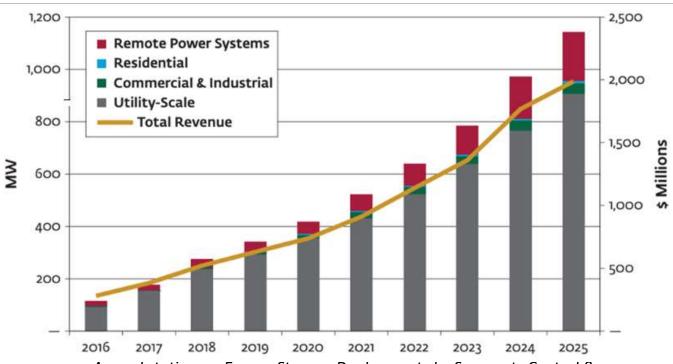

Energy Storage: Balancing Energy Generation & Use

- Energy that is not used can be consumed later.
- Match the needs and demands
- Grid resilience
- Back up power during outages


Battery technology is rapidly changing.

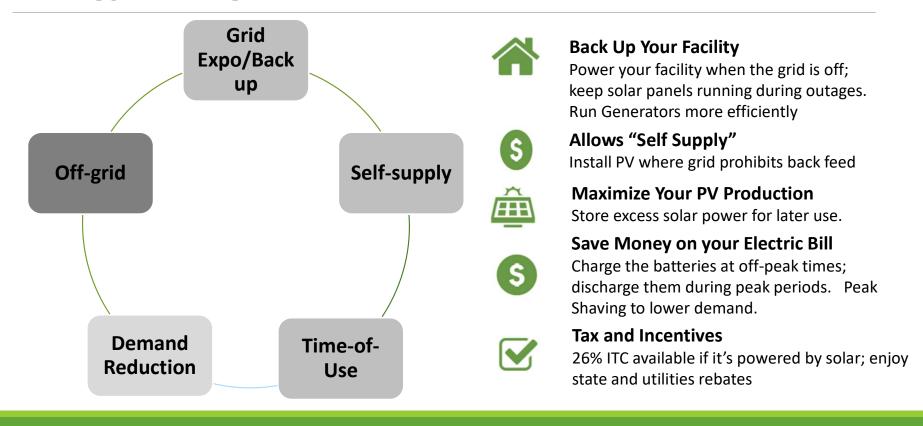
Global Energy Storage Market


Global cumulative storage deployments


Source: BloombergNEF

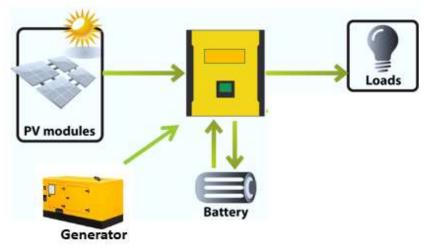
US Energy Storage Market

U.S. energy storage annual deployment forecast, 2012-2024E (MW)

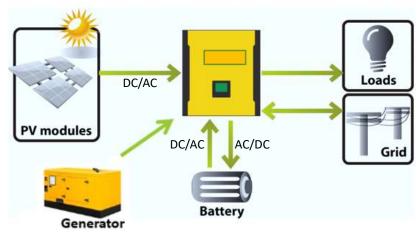


Central & Latin America Energy Storage Market

Annual stationary Energy Storage Deployments by Segments Central & Latin America, (2016-2025); Source IFC ES Report


Energy Storage Benefits

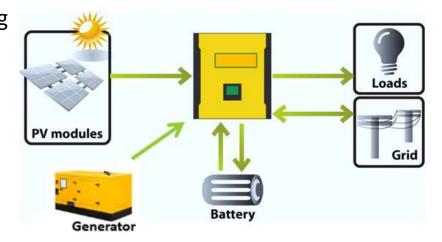
Off-Grid Application


Stand alone PV + Storage System

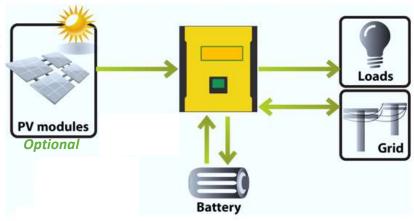
- a) No grid available. Power loads from PV or Battery
- a) Integrate generator, if needed


Grid Export / Back up

- a) When grid fails, the hybrid Inverter keeps the PV system operating, and powers loads from PV or Battery.
- b) During the day, when grid is connected, the excessive PV production feeds back to the grid


Self-Supply Application (HI, AZ & Caribbean)

- a) Grid Available for Purchase but Sale is prohibited
- b) PV power charges batteries during day and discharges them at night.
- c) When Battery Charge low, power bought from grid to supply loads and/or charge batteries.


Grid Export / Back up / Time-of-Use (CA)

a) Peak shaving: Block out times for purchasing grid power (ie. high tariff times) and recharge batteries at low-cost times. It works without Solar.

Demand Curtailment

a) Reduce KW-Charge for commercial clients, require a smart control unit. It works without Solar.

US Headquarter

A world-leading manufacturer who brings automotive Lithium Ferro Phosphate batteries to the energy sector

- ☐ U.S. Headquarter: Southampton, PA
- 30,000 Sqf Facility for R&D, Sales and Logistic
- ☐ Logistic Centers in California and Florida
- Over 45 MWH Installs Worldwide
- Exclusive Battery Supplier for a local railway company

Manufacturing Facility

- Manufacturing Facility in Shenzhen, China
- ☐ ISO and OHSAS Certified
- ☐ Produce Lithium Batteries since 2008
- ☐ Supply Batteries to Automotive Companies
- ☐ 1 GWH Production Capacity

Fortress Lithium Iron Phosphate Batteries

eVault 18.5 kWh

LFP-10 kWh

LFP-5 kWh

New Product-eFlex 5.4

SMART * MONITORING FROM ANYWHERE * FLEXIBLE INSTALL

Available in June 2020

New Features:

- √ Closed-loop communication with Inverter(s)
- ✓ Memory card for data storage
- ✓ WiFi remote monitoring
- ✓ Wall-mounting, Floor-standing & Racking Solution

Technical Specification

	eVault 18.5	eFlex 5.4	LFP-10	LFP-5
Total Energy [KWH]	18.5	5.4	10.2	5.1
Capacity [AH]	360	105	200	100
Battery Voltage [V]	48V			
Max. Charge Current (Continuous) [A]	160	100	80	80
Max Discharge Power (Continuous) [KW]	9 (180A)	5 (100A)	5 (100A)	4 (80A)
Peak Output [KW]	12 (240A)	6.6 (130A)	7.5 (150A)	7.5 (150A)
Parallel Stacking	12	15	2	3
LCD Monitoring	Yes	No	No	No
Communication	CAN/RS485	CAN/RS485	N/A	N/A
Breaker	250A	125A	150A	125A
Warranty	5/10 years; up-to 6,000 cycles			

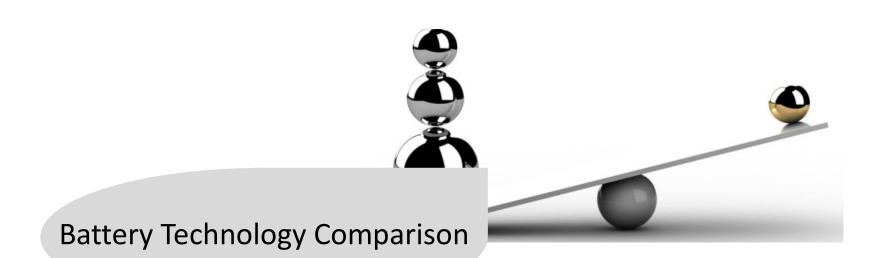
Two type of Battery Management Systems

	LFP-5 &10	eVault 18.5 & e <i>Flex</i> 5.4
BMS Type	Mosfet-based	Contact-based
Overcharge and Deep Discharge Protection	√	\checkmark
Over-heat & Low Temp. Protection	√	✓
Over Current Protection	√	√
Short Circuit and Open Circuit Protection	√	√
Cell monitoring and balancing	√	✓
Communication with Inverters		√
Communication between units in parallel		√
Remote monitoring		√
Cell Type	Cylindrical	Prismatic

eVault 18.5 Local LCD Display

Safety features:

HV: High Voltage


LV: Low Voltage

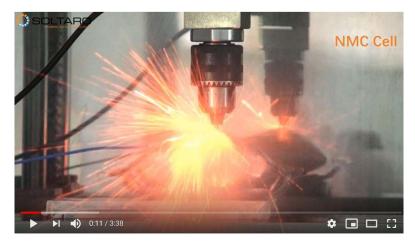
HT: Hight Temperature

LT: Low Temperature

OC: Open Circuit

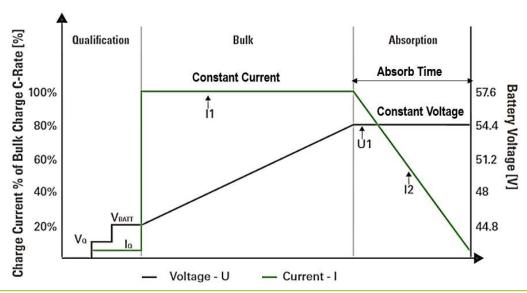
SC: Short Circuit

LFP vs NMC vs LiPo

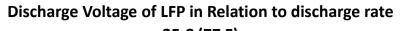

We incorporate the safest technology available into our batteries

	Fortress Power	Tesla, LG Chem, Panasonic	Humless		
Chemistry	Lithium Ferro/Iron Phosphate (LFP) or LiFePo4	Lithium Ion or Nickel- Manganese - Cobalt (NMC)	Lithium Polymer or LiPo		
Safety	\checkmark	Χ	Χ		
Eco-friendly	✓	Χ	X		
Thermal Stability	~	Χ	Χ		
Life Cycles	6000	< 3000	< 1500		
Degradation Rate		LFP < NMC < LiPo			
Energy density		LFP < NMC < LiPo			

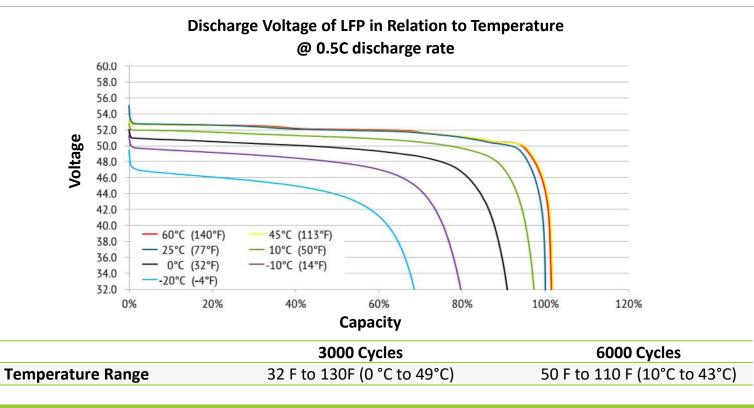
Highest Safety Standard


Lithium Iron Phosphate Technology (Fortress Power)

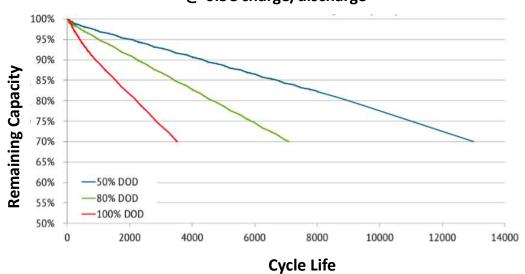
Nickel-Manganese-Cobalt Technology (Tesla)


View <u>LFP vs. NMC nail test video</u> on YouTube


LFP Charging Stage


	Lithium Iron Phosphate	Lead Acid
Absorb time	6 min	120min
Float Charge	N/A	

LFP Discharging Curve



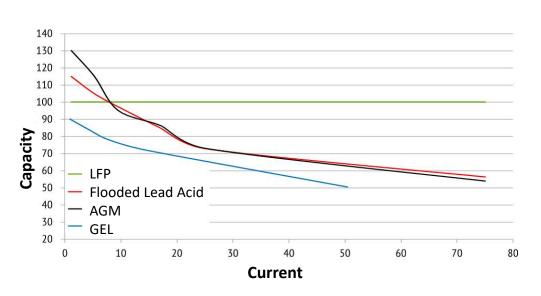
Temperature Impact on LFP Performance

LFP Cycle Life vs Depth of Discharge

Cycle Life in Relation to Depth of Discharge (DoD) @ 0.5C charge/discharge

	3000 Cycles	6000 Cycles		
Depth of Discharge	90%	80%		

Why over 90% Global ESS Installs are Lithium?


Comparison of different Battery Technologies

	Fortress LFP	Lithium Ion	Li-Polymer	Flooded Lead Acid	AGM	Nickel Iron
Round trip efficiency	98%	95%	95%	80%	88%	65%
Cycle Life @ 80% DOD	6,000	2,800	1,500	300	500	8,000
Off Grid Years	16.4	6.8	4	1	1.4	21.9
Energy Throughput ** in MWH	47	21.3	11.5	1.9	3.5	41.6
The Homeowner Cost of 10 kWh	6,900	6,500	4,500	1,200	2,200	18,000
Cost per kWH	0.14	0.30	0.40	0.74	0.57	0.19
Safety	Yes	No	No	No	No	Yes
Free Maintenance	Yes	Yes	Yes	No	Yes	No

Energy Throughput: The total amount of energy a battery can be expected to store and deliver over its lifetime.

Energy Throughput=Nominal capacity x DoD x Efficiency x Cycle Life

Performance Comparison: LFP vs Lead Acid

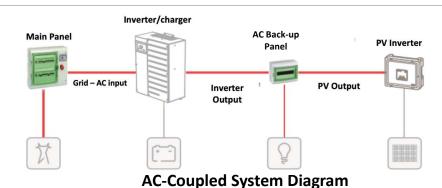
LFP advantages:

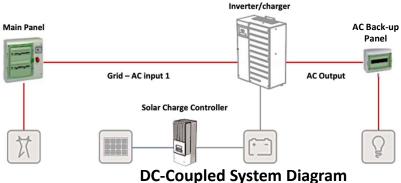
- a) LFP Actual Capacity = Nameplate Capacity
- b) Lead Acid allows only 50% DoD, Actual Capacity = 0.5*Nameplate Capacity
- Lead Acid Capacity is affected by Discharge Rate, Temperature, and DoD at much higher rates than LFP.

Lead Acid capacity drops significantly when output current increases!

Space Comparison: LFP is 1/3 size and 1/3 weight of AGM

AGM Batteries 48V, 250AH (6 kWh usable power)


LFP Technology Advantage


Integrating battery storage to PV array

AC vs DC Coupled Solution

Application for AC coupled solutions

- When retrofitting to existing PV systems
- For new installations that require module level rapid shutdown

(\f

Application for DC coupled solutions

- For new installation
- No additional PV inverter
- More efficient

Compatible Inverters

COMPATIBLE WITH MOST 48V CHARGERS AND HYBRID INVERTERS!

Brand	Inverter/Charger Mode	Configuration
Schneider **	Conext XW MPPT charge controller; Conext XW+ and XW pro series;	AC or DC coupled
Outback	Skybox, FLEX max charge controller (48V), FLEXpower series (48V); Radian series (48V); FXR(A) and FXR (E) series (48V); GVFX and GVFX series (48V);	AC or DC coupled
Magnum	MS 4448PAE; MS 4048-20B; PT-100 Charge Controller	AC or DC coupled
SMA**	SUNNY ISLAND 4548-US/6048-US; SUNNY ISLAND 3.0M/4.4M/6.0H/8.0H	AC coupled
Sol-Ark**	8 KW & 12 KW Inverter	AC or DC coupled
Victron	Phoenix VE.Direct Inverter; MultiPlus and Quatro Inverter/Charger; Skylla-TG Charger; General; Color Control or Venus GX	DC coupled
Morning Star	TriStar MPPT 600V; TriStar MPPT; Tristar PWM	DC coupled
Midnite Solar	Solar Classic 150, 200 & 250; Solar Classic 150, 200 & 250-SL	DC coupled

^{**} we're establishing close-loop communication with those inverters!

Fortress + Schneider XW+ & XW Pro (AC & DC Coupling)

Key features:

- Over 10 years in operation
- ☐ Stacking up-to 4 in 120/240V
- ☐ Stacking up-to 9 in 120/208V
- Component system with many features (Off-Grid, Time-of-Use, Load shifting, Back-up, Grid export)
- ☐ Allows DC & AC coupling
- Performs in hot environments up to 70°C
- Auto-Gen Start optional

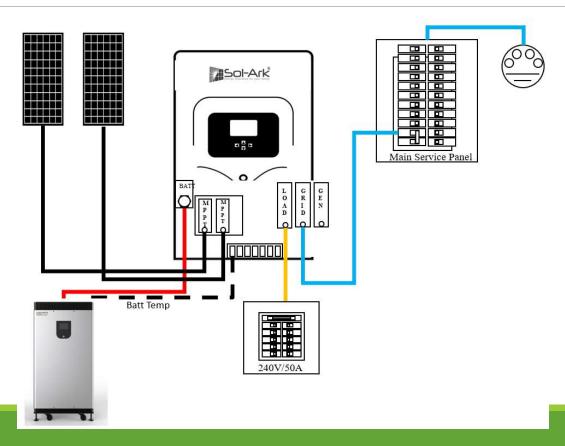
13.6 kW/74 kWh

Technical Specification

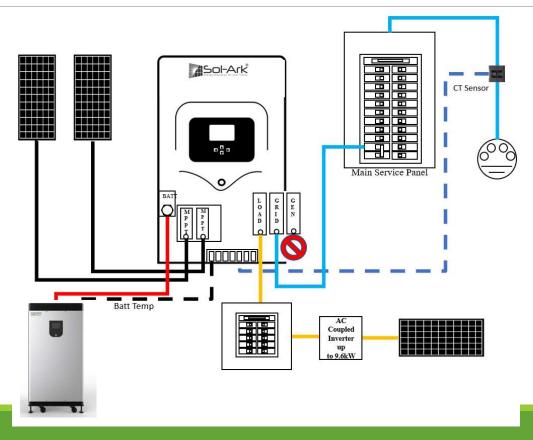
	Technical Specification		
Inverter AC output	5.5 KW	6.8 KW	
Surge power at backup	7/9.5 kW (30 min/60 sec)	8.5/12 kW (30 min/60 sec)	
Storage capacity 5/10/18.5 KWH per unit; scala		it; scalable to 222 KWH	
UPS Grid Failure Transfer time	Built-in 60A auto-transfer relay at 8ms		
Compatible PV Inverters	AC-coupled to Enphase, AC modules, SolarEdge, SMA, Fronius 10 kW+, etc.		
Stack-ability	 Max. 4 in 1-Ph (120/240V) Max. 9 in 3-Ph (120/208V): Max. 3 units per phase 		

FORTRESS POWER ESS-Residential & Commercial

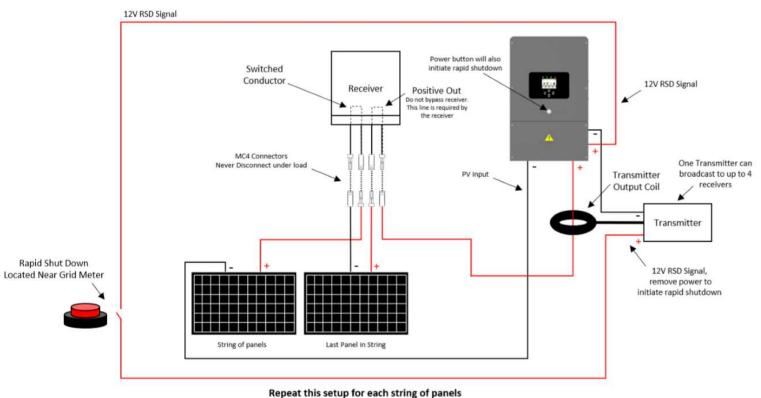
12 kW/18.5 kWh


Key features:

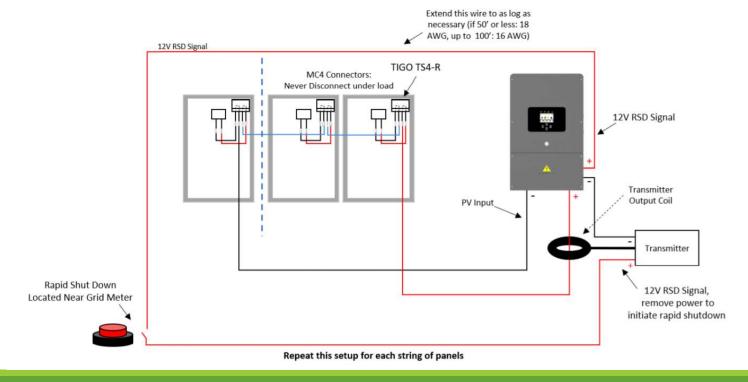
- ☐ Stacking up-to 9 in 120/240V
- ☐ Stacking up-to 9 in 120/208V
- ☐ Storage Capacity 10 222kWh
- □ 93% roundtrip efficiency (PV->Battery->Load)
- Auto-Gen start included
- ☐ Allows DC & AC coupling
- ☐ All in one unit (Off-grid, Time-of-use, Self-supply, Back-up, Grid export)


Technical Specification

	Output to th	Output to the Grid			
	On Solar or Battery (Back-up)	With Grid or Generator Present	Pass-through		
AC Output Power	8 KW	9.6 KW	12 KW		
Storage Capacity	5/10/18.5 KWH per unit; scalable to 222 KWH				
Surge Power	20 kW (5 Sec)				
Critical Load Panel	50A @ 240V				
Response Time (Grid-tie to Off-grid)	4ms				
PV Array Size	Up-to 13 KW in DC Coupling; Up-to 9.6 KW in AC Coupling				
Compatible PV Inverters in AC coupling	AC-coupled to Enphase, AC modules, SolarEdge, SMA, Fornius and et		SMA, Fornius and etc		
PV Array in AC & DC Coupling combined	Total max 13 KW				
Stack-ability	 Max. 9 in 1-Ph (120/240V) Max. 9 in 3-Ph (120/208V): 3 units per phase 				
Warranty	10-year standard warranty				

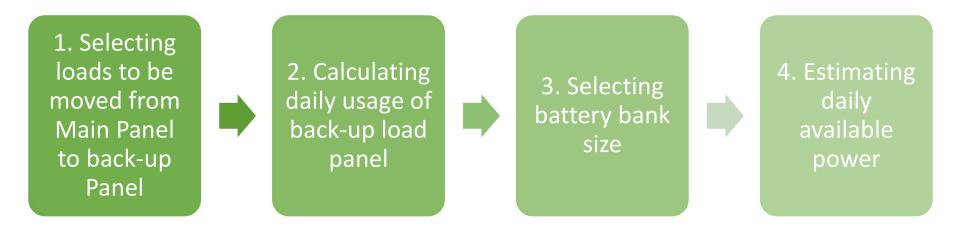

DC Coupling System Wiring

AC Coupling System Wiring



Integrating Midnite for String Level Rapid Shutdown

Integrating Tigo for Module Level Rapid Shutdown (NEC 2017)


Rapid Shutdown Hardware Diagram (TIGO RSD per PV Module)

Fortress Energy Storage Sizing Tool simplifies battery size design

Automatically size Up Energy Storage for Backup

Available to our authorized installers

Fortress Energy Storage Sizing tool Example

Category	Item	Quantity	Starting Watts	Running Watts	Hours/Day	Watthours/Day
1 Essential	Refrigerator/Freezer-Energy Star	1	1200	200	8	1600
2 Essential	Incandescent Light Bulb-60 Watt	4	240	240	4	3840
3 Essential	LED Light Bulb-60 Watt Equivalent	6	48	48	4	1152
4 Essential	Sump Pump-1/3 HP	1	1300	800	0	0
5 Essential	Water Well Pump-1/3 HP	1	1400	750	3	2250
6 Kitchen	Electric Range-6" Element	1	1500	1500	1	1500
7 Kitchen	Microwave Oven-650 Watts	1	1000	1000	0.1	100
8 Personal Electronics	TV-Flat Screen-46"	1	190	190	6	1140
9 Personal Electronics	Cell Phone Charger	1	25	25	2	50
10 Personal Electronics	Computer-Laptop	1	250	250	2	500
11 HVAC	Window AC-10,000 BTU	1	1400	1200	3	3600
12 HVAC	Furnace Fan-gas/oil-1/4 HP	1	1000	600	1	600
STANDBY POWER	Sol-Ark 8 kW	1	60	60	24	1440
Inverter Type	Quantity**	Totals Watthours/Day	9613	6803 Surge Power		17772 Running Watts
Sol-Ark 8 kW	1	17772 Watts	1038		iilable	1197 Watts Available

Monthly PV/Day Production and Energy Available to Charge Batteries

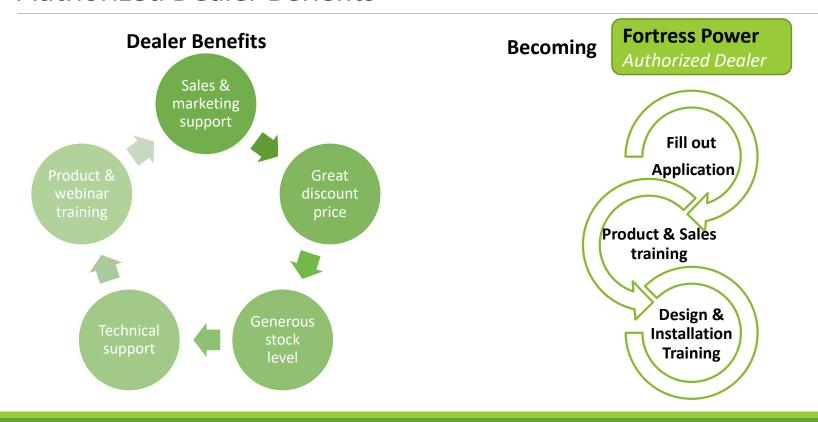
9 KW PV array + 9KW/20 KWH

	Solar		Energy Per Day	Full charge on	avail. Energy after
	Radiation	AC Energy	(watthours)	battery	battery charged
January	3.8	751	24,226	(18,432)	5,794
February	4.28	746	26,643	(18,432)	8,211
March	5.23	986	31,806	(18,432)	13,374
April	5.91	1,039	34,633	(18,432)	16,201
May	6.32	1,132	36,516	(18,432)	18,084
June	6.74	1,106	36,867	(18,432)	18,435
July	6.36	1,090	35,161	(18,432)	16,729
August	5.78	1,004	32,387	(18,432)	13,955
September	5.19	886	29,533	(18,432)	11,101
October	5.08	926	29,871	(18,432)	11,439
November	4.14	749	24,967	(18,432)	6,535
December	3.38	646	20,839	(18,432)	2,407

WHAT TO EXPECT

Available power in Battery at 90% DoD 18,432 Wh 0.9 Days

Lowest average daily available PV Power: 20,800 Wh Highest average daily available PV Power: 36,800 Wh


Other Applications: (T-O-U, Self Supply, Demand Curtailment)

Send your project information

to

sales@fortresspower.com

Authorized Dealer Benefits

Thank You & Contact Us

If you want to go fast, go alone; if you want to go far, go together!

Jing Yu jingy@fortresspower.com (877) 497- 6937 www.fortresspower.com

Sales: sales: sales@fortresspower.com
Support: techsupport@fortresspower.com
Marketing: jamieb@fortresspower.com